Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Molecules ; 28(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: covidwho-2240863

RESUMO

The Coronavirus Disease 2019 (COVID-19) and dengue fever (DF) pandemics both remain to be significant public health concerns in the foreseeable future. Anti-SARS-CoV-2 drugs and vaccines are both indispensable to eliminate the epidemic situation. Here, two piperazine-based polyphenol derivatives DF-47 and DF-51 were identified as potential inhibitors directly blocking the active site of SARS-CoV-2 and DENV RdRp. Data through RdRp inhibition screening of an in-house library and in vitro antiviral study selected DF-47 and DF-51 as effective inhibitors of SARS-CoV-2/DENV polymerase. Moreover, in silico simulation revealed stable binding modes between the DF-47/DF-51 and SARS-CoV-2/DENV RdRp, respectively, including chelating with Mg2+ near polymerase active site. This work discovered the inhibitory effect of two polyphenols on distinct viral RdRp, which are expected to be developed into broad-spectrum, non-nucleoside RdRp inhibitors with new scaffold.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Polifenóis/farmacologia , RNA Polimerase Dependente de RNA/metabolismo , Antivirais/química , Simulação de Acoplamento Molecular
2.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: covidwho-2216327

RESUMO

This study presents proof of concept for designing a novel HIV-1 covalent inhibitor targeting the highly conserved Tyr318 in the HIV-1 non-nucleoside reverse transcriptase inhibitors binding pocket to improve the drug resistance profiles. The target inhibitor ZA-2 with a fluorosulfate warhead in the structure was found to be a potent inhibitor (EC50 = 11-246 nM) against HIV-1 IIIB and a panel of NNRTIs-resistant strains, being far superior to those of NVP and EFV. Moreover, ZA-2 was demonstrated with lower cytotoxicity (CC50 = 125 µM). In the reverse transcriptase inhibitory assay, ZA-2 exhibited an IC50 value of 0.057 µM with the ELISA method, and the MALDI-TOF MS data demonstrated the covalent binding mode of ZA-2 with the enzyme. Additionally, the molecular simulations have also demonstrated that compounds can form covalent binding to the Tyr318.


Assuntos
Fármacos Anti-HIV , HIV-1 , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/química , HIV-1/metabolismo , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/química , Transcriptase Reversa do HIV/metabolismo , Desenho de Fármacos , Relação Estrutura-Atividade
3.
J Med Chem ; 65(24): 16902-16917, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: covidwho-2150977

RESUMO

The spread of SARS-CoV-2 keeps threatening human life and health, and small-molecule antivirals are in demand. The main protease (Mpro) is an effective and highly conserved target for anti-SARS-CoV-2 drug design. Herein, we report the discovery of potent covalent non-peptide-derived Mpro inhibitors. A series of covalent compounds with a piperazine scaffold containing different warheads were designed and synthesized. Among them, GD-9 was identified as the most potent compound with a significant enzymatic inhibition of Mpro (IC50 = 0.18 µM) and good antiviral potency against SARS-CoV-2 (EC50 = 2.64 µM), similar to that of remdesivir (EC50 = 2.27 µM). Additionally, GD-9 presented favorable target selectivity for SARS-CoV-2 Mpro versus human cysteine proteases. The X-ray co-crystal structure confirmed our original design concept showing that GD-9 covalently binds to the active site of Mpro. Our nonpeptidic covalent inhibitors provide a basis for the future development of more efficient COVID-19 therapeutics.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Antivirais/farmacologia , Antivirais/química , Piperazinas/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular
4.
J Med Chem ; 65(19): 13343-13364, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: covidwho-2028635

RESUMO

The continuous spread of SARS-CoV-2 calls for more direct-acting antiviral agents to combat the highly infectious variants. The main protease (Mpro) is an promising target for anti-SARS-CoV-2 drug design. Here, we report the discovery of potent non-covalent non-peptide Mpro inhibitors featuring a 1,2,4-trisubstituted piperazine scaffold. We systematically modified the non-covalent hit MCULE-5948770040 by structure-based rational design combined with multi-site binding and privileged structure assembly strategies. The optimized compound GC-14 inhibits Mpro with high potency (IC50 = 0.40 µM) and displays excellent antiviral activity (EC50 = 1.1 µM), being more potent than Remdesivir. Notably, GC-14 exhibits low cytotoxicity (CC50 > 100 µM) and excellent target selectivity for SARS-CoV-2 Mpro (IC50 > 50 µM for cathepsins B, F, K, L, and caspase 3). X-ray co-crystal structures prove that the inhibitors occupy multiple subpockets by critical non-covalent interactions. These studies may provide a basis for developing a more efficient and safer therapy for COVID-19.


Assuntos
COVID-19 , Hepatite C Crônica , Antivirais/química , Antivirais/farmacologia , Caspase 3 , Catepsinas , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ácido Orótico/análogos & derivados , Piperazinas/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2
5.
Curr Med Chem ; 29(4): 682-699, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1742083

RESUMO

COVID-19 is an infectious disease caused by SARS-CoV-2. The life cycle of SARS-CoV-2 includes the entry into the target cells, replicase translation, replicating and transcribing genomes, translating structural proteins, assembling and releasing new virions. Entering host cells is a crucial stage in the early life cycle of the virus, and blocking this stage can effectively prevent virus infection. SARS enters the target cells mediated by the interaction between the viral S protein and the target cell surface receptor angiotensin- converting enzyme 2 (ACE2), as well as the cleavage effect of a type-II transmembrane serine protease (TMPRSS2) on the S protein. Therefore, the ACE2 receptor and TMPRSS2 are important targets for SARS-CoV-2 entry inhibitors. Herein, we provide a concise report/information on drugs with potential therapeutic value targeting virus-ACE2 or virus-TMPRSS2 interactions to provide a reference for the design and discovery of potential entry inhibitors against SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Humanos , Serina Endopeptidases , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/farmacologia , Internalização do Vírus
6.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: covidwho-1674735

RESUMO

Viral infections pose a persistent threat to human health. The relentless epidemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global health problem, with millions of infections and fatalities so far. Traditional approaches such as random screening and optimization of lead compounds by organic synthesis have become extremely resource- and time-consuming. Various modern innovative methods or integrated paradigms are now being applied to drug discovery for significant resistance in order to simplify the drug process. This review provides an overview of newly emerging antiviral strategies, including proteolysis targeting chimera (PROTAC), ribonuclease targeting chimera (RIBOTAC), targeted covalent inhibitors, topology-matching design and antiviral drug delivery system. This article is dedicated to Prof. Dr. Erik De Clercq, an internationally renowned expert in the antiviral drug research field, on the occasion of his 80th anniversary.


Assuntos
Antivirais/farmacologia , Antivirais/uso terapêutico , Descoberta de Drogas/métodos , Desenho de Fármacos/métodos , Desenho de Fármacos/tendências , Descoberta de Drogas/tendências , Reposicionamento de Medicamentos/métodos , Reposicionamento de Medicamentos/tendências , Humanos , Viroses/tratamento farmacológico
7.
Acta Pharm Sin B ; 12(2): 581-599, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: covidwho-1377653

RESUMO

Novel therapies are urgently needed to improve global treatment of SARS-CoV-2 infection. Herein, we briefly provide a concise report on the medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors with representative examples in different strategies from the medicinal chemistry perspective.

8.
Adv Exp Med Biol ; 1322: 219-260, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1309020

RESUMO

Recent coronavirus outbreaks of SARS-CoV-1 (2002-2003), MERS-CoV (since 2012), and SARS-CoV-2 (since the end of 2019) are examples of how viruses can damage health care and generate havoc all over the world. Coronavirus can spread quickly from person to person causing high morbidity and mortality. Unfortunately, the antiviral armamentarium is insufficient to fight these infections. In this chapter, we provide a detailed summary of the current situation in the development of drugs directed against pandemic human coronaviruses. Apart from the recently licensed remdesivir, other antiviral agents discussed in this review include molecules targeting viral components (e.g., RNA polymerase inhibitors, entry inhibitors, or protease inhibitors), compounds interfering with virus-host interactions, and drugs identified in large screening assays, effective against coronavirus replication, but with an uncertain mechanism of action.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Pandemias , SARS-CoV-2
9.
Signal Transduct Target Ther ; 5(1): 299, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: covidwho-997814

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more than 10 million individuals. A typical feature of COVID-19 is the suppression of type I and III interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism by which SARS-CoV-2 evades antiviral immunity remains elusive. Here, we reported that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway mediated by RIG-I/MDA-5-MAVS signaling. In addition, the SARS-CoV-2 M protein suppresses type I and III IFN induction stimulated by SeV infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1, thus preventing the formation of the multiprotein complex containing RIG-I, MAVS, TRAF3, and TBK1 and subsequently impeding the phosphorylation, nuclear translocation, and activation of IRF3. Consequently, ectopic expression of the SARS-CoV-2 M protein facilitates the replication of vesicular stomatitis virus. Taken together, these results indicate that the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of SARS-CoV-2-induced antiviral immune suppression and illuminates the pathogenic mechanism of COVID-19.


Assuntos
COVID-19/metabolismo , Proteína DEAD-box 58/metabolismo , Interferon Tipo I/biossíntese , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferons/biossíntese , SARS-CoV-2/metabolismo , Transdução de Sinais , Proteínas da Matriz Viral/metabolismo , Animais , COVID-19/genética , Chlorocebus aethiops , Proteína DEAD-box 58/genética , Células HEK293 , Células HeLa , Humanos , Interferon Tipo I/genética , Helicase IFIH1 Induzida por Interferon/genética , Interferons/genética , Receptores Imunológicos , SARS-CoV-2/genética , Células Vero , Proteínas da Matriz Viral/genética , Interferon lambda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA